Advertisements
Advertisements
प्रश्न
What will be the value of sin 45° + `1/sqrt(2)`?
विकल्प
`1 + sqrt(2)`
`2sqrt(2)`
`1/sqrt(2)`
`sqrt(2)`
उत्तर
`sqrt(2)`
Explanation:
sin 45° + `1/sqrt(2) = 1/sqrt(2) + 1/sqrt(2)` .....`[∵ sin^circ = 1/sqrt(2)]`
= `(1 + 1)/sqrt(2)`
= `2/sqrt(2)`
= `2/sqrt(2) xx sqrt(2)/sqrt(2)`
= `(2sqrt(2))/2`
= `sqrt(2)`
Thus, the value of sin 45° + `1/sqrt(2)` is `sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`2 sin x/2 = 1`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
If sin A = `1/2`, then the value of cot A is ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.