Advertisements
Advertisements
प्रश्न
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
उत्तर
Proof: L.H.S. = sec θ + tan θ
= `1/bb(cos θ) + bb(sin θ)/bb(cos θ)` ........`[∵ sec θ = 1/bb(cos θ), tan θ = bb(sin θ)/bb(cos θ)]`
= `bb(1 + sintheta)/bbcostheta` = `((1 + sin θ) bb(1 - sin θ))/(cos θ bb(1 - sin θ)` ......[Multiplying `bb(1 - sin θ)` with the numerator and denominator]
= `(1^2 - bb(sin^2 θ))/(cos θ bb(1 - sin θ)`
= `bb (cos^2 θ)/(cos θ bb(1 - sin θ)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If cot θ = `7/8`, evaluate cot2 θ.
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If sec θ = `1/2`, what will be the value of cos θ?
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.