Advertisements
Advertisements
Question
Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.
Proof: L.H.S. = sec θ + tan θ
= `1/square + square/square`
= `square/square` ......`(∵ sec θ = 1/square, tan θ = square/square)`
= `((1 + sin θ) square)/(cos θ square)` ......[Multiplying `square` with the numerator and denominator]
= `(1^2 - square)/(cos θ square)`
= `square/(cos θ square)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
Solution
Proof: L.H.S. = sec θ + tan θ
= `1/bb(cos θ) + bb(sin θ)/bb(cos θ)` ........`[∵ sec θ = 1/bb(cos θ), tan θ = bb(sin θ)/bb(cos θ)]`
= `bb(1 + sintheta)/bbcostheta` = `((1 + sin θ) bb(1 - sin θ))/(cos θ bb(1 - sin θ)` ......[Multiplying `bb(1 - sin θ)` with the numerator and denominator]
= `(1^2 - bb(sin^2 θ))/(cos θ bb(1 - sin θ)`
= `bb (cos^2 θ)/(cos θ bb(1 - sin θ)`
= `cos θ/(1 - sin θ)` = R.H.S.
∴ L.H.S. = R.H.S.
∴ sec θ + tan θ = `cos θ/(1 - sin θ)`
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.