English

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine: sin C, cos C - Mathematics

Advertisements
Advertisements

Question

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin C, cos C

Sum

Solution

ΔABC is right angled at B

AB = 24cm, BC = 7cm.

Let ‘x’ be the hypotenuse,

By applying Pythagoras

AC2 = AB2 + BC2

x2 = 242 + 72

x2 = 576 + 49

x2 = 625

x = 25

For Sin C, Cos C

sin C = `("AB")/("AC") =  24/25`

cos C = `("BC")/("AC") = 7/25`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.1 [Page 181]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.1 | Q 1.2 | Page 181
RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.1 | Q 2 .2 | Page 23

RELATED QUESTIONS

In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.


State whether the following are true or false. Justify your answer.

sec A = `12/5` for some value of angle A.


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin A = 2/3`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`


If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`


If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.


Evaluate the following

sin 45° sin 30° + cos 45° cos 30°


Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)


If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.


The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.


Prove the following:

If tan A = `3/4`, then sinA cosA = `12/25`


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


Find the value of sin 0° + cos 0° + tan 0° + sec 0°.


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


If sec θ = `1/2`, what will be the value of cos θ?


If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.


If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.


Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.


(3 sin2 30° – 4 cos2 60°) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×