Advertisements
Advertisements
Question
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
Solution
Given:
sin (A − B) = sin A cos B − cos A sin B ......(1)
cos (A − B) = cos A cos B + sin A sin B ......(2)
`To find:
The values of `sin 15^@` and `cos 15^@`
In this problem, we need to find `sin 15^@` and `cos 15^@`
Hence to get `15^@` angle we need to choose the value if A and B such that `(A - B) = 15^@`
So If we choose A = 45° and B = 30°
Then we get (A - B) = 15°
Therefore by substituting A = 45° and B = 30° in equation (1)
We get
`sin(45^@ - 30^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@`
Therefore
`sin(15^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@` ....(3)
Now we know that,
`sin 45^@ = cos 45^@ = 1/sqrt2, sin 30^@ = 1/2, cos 30^@ = sqrt3/2`
Now by substituting above values in equation (3)
We get,
`sin (15^@) = (1/sqrt2) xx (sqrt3/2) - (1/sqrt2) xx (1/2)`
`= sqrt3/(2sqrt2) - 1/(2sqrt2)`
`= (sqrt3 - 1)/(2sqrt2)`
Therefore
`cos(15^@) = (sqrt3 -1)/(2sqrt2)` ....(6)
Therefore from equation (4) and (6)
`sin(15^@) = (sqrt3 - 1)/(2sqrt2)`
`cos(15^@) = (sqrt3 + 1)/(2sqrt2)`
APPEARS IN
RELATED QUESTIONS
State whether the following are true or false. Justify your answer.
The value of tan A is always less than 1.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
`(sin theta)/(1 + cos theta)` is ______.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ