Advertisements
Advertisements
प्रश्न
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
उत्तर
Given:
sin (A − B) = sin A cos B − cos A sin B ......(1)
cos (A − B) = cos A cos B + sin A sin B ......(2)
`To find:
The values of `sin 15^@` and `cos 15^@`
In this problem, we need to find `sin 15^@` and `cos 15^@`
Hence to get `15^@` angle we need to choose the value if A and B such that `(A - B) = 15^@`
So If we choose A = 45° and B = 30°
Then we get (A - B) = 15°
Therefore by substituting A = 45° and B = 30° in equation (1)
We get
`sin(45^@ - 30^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@`
Therefore
`sin(15^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@` ....(3)
Now we know that,
`sin 45^@ = cos 45^@ = 1/sqrt2, sin 30^@ = 1/2, cos 30^@ = sqrt3/2`
Now by substituting above values in equation (3)
We get,
`sin (15^@) = (1/sqrt2) xx (sqrt3/2) - (1/sqrt2) xx (1/2)`
`= sqrt3/(2sqrt2) - 1/(2sqrt2)`
`= (sqrt3 - 1)/(2sqrt2)`
Therefore
`cos(15^@) = (sqrt3 -1)/(2sqrt2)` ....(6)
Therefore from equation (4) and (6)
`sin(15^@) = (sqrt3 - 1)/(2sqrt2)`
`cos(15^@) = (sqrt3 + 1)/(2sqrt2)`
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
Let f(x) = sinx.cos3x and g(x) = cosx.sin3x, then the value of `7((f(π/7) + g(π/7))/(g((5π)/14) + f((5π)/14)))` is ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
If θ is an acute angle of a right angled triangle, then which of the following equation is not true?