Advertisements
Advertisements
प्रश्न
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
उत्तर १
Given: sec θ = `13/5`
We know that,
Sec θ = `"Hypotenuse"/"Adjacent Side"`
Sec θ = `13/5 = "AC"/"BC"`
Let AC = 13k and BC = 5k
In ΔABC, ∠B = 90°
By Pathagoras theorem,
AC2 = AB2 + BC2
(13k)2 = AB2 + (5k)2
AB2 = 169k2 - 25k2
AB2 = 144k2
AB = 12k
Sin θ = `"AB"/"AC" = "12k"/"13k" = 12/13`
Cos θ = `"BC"/"AC" = "5k"/"13k" = 5/13`
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `[2 × (12/13) - 3 × (5/13)]/[4 × (12/13) + 9 × (5/13)]`
LHS = `[24/13 - 15/13]/[48/13 + 45/13]`
LHS = `[9/13]/[3/13]`
LHS = `9/(cancel13) × cancel13/3`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
उत्तर २
Given: sec θ = `13/5`
cos θ = `1/secθ = 5/13`
sin2θ = 1 - cos2θ
sin2θ = `1 - (5/13)^2`
sin2θ = `1 - 25/169`
sin2θ = `(169 − 25)/169`
sin2θ = `144/169`
sin θ = `12/13`
Now, put the values in the equation,
LHS = `(2sinθ - 3 cosθ)/(4sinθ - 9cosθ)`
LHS = `(2 × (12/13) - 3 × (5/13))/(4 × (12/13) - 9 × (5/13))`
LHS = `(24/13 - 15/13)/(48/13 - 45/13)`
LHS = `((24- 15)/cancel13)/((48 - 45)/cancel13)`
LHS = `9/3`
LHS = 3
RHS = 3
LHS = RHS
`(2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`
Hence proved.
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
In the given figure, if sin θ = `7/13`, which angle will be θ?
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.