Advertisements
Advertisements
प्रश्न
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
उत्तर
Given: Sin θ = `12/13 = "AB"/"AC"`
Let, AB = 12k and AC = 13k
In ΔABC, ∠B = 90°
By pythagoras theorem,
AB2 + BC2 = AC2
(12k)2 + BC2 = (13k)2
144k2 + BC2 = 169k2
BC2 = 169k2 - 144k2
BC2 = 25k2
Taking square root,
BC = 5k
∴ Cos θ = `"BC"/"AC" = "5k"/"13k" = 5/13`
∴ tan θ = `"AB"/"BC" = "12k"/"5k" = 12/5`
Now,
`(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
⇒ `[(12/13)^2 - (5/13)^2]/[2 × 12/13 × 5/13] × 1/(12/5)^2`
⇒ `[(144/169) - (25/169)]/[120/169] × 1/(144/25)`
⇒ `[(144/169) - (25/169)]/[120/169] × 25/144`
⇒ `((144 - 25)/cancel169)/[120/cancel169] × 25/144`
⇒ `119/120 × 25/144`
⇒ `595/3456`
APPEARS IN
संबंधित प्रश्न
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
What will be the value of sin 45° + `1/sqrt(2)`?
Find will be the value of cos 90° + sin 90°.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.
In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.