Advertisements
Advertisements
प्रश्न
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
उत्तर
Given: Sin θ = `12/13 = "AB"/"AC"`
Let, AB = 12k and AC = 13k
In ΔABC, ∠B = 90°
By pythagoras theorem,
AB2 + BC2 = AC2
(12k)2 + BC2 = (13k)2
144k2 + BC2 = 169k2
BC2 = 169k2 - 144k2
BC2 = 25k2
Taking square root,
BC = 5k
∴ Cos θ = `"BC"/"AC" = "5k"/"13k" = 5/13`
∴ tan θ = `"AB"/"BC" = "12k"/"5k" = 12/5`
Now,
`(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
⇒ `[(12/13)^2 - (5/13)^2]/[2 × 12/13 × 5/13] × 1/(12/5)^2`
⇒ `[(144/169) - (25/169)]/[120/169] × 1/(144/25)`
⇒ `[(144/169) - (25/169)]/[120/169] × 25/144`
⇒ `((144 - 25)/cancel169)/[120/cancel169] × 25/144`
⇒ `119/120 × 25/144`
⇒ `595/3456`
APPEARS IN
संबंधित प्रश्न
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Find the value of x in the following :
`sqrt3 sin x = cos x`
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
(3 sin2 30° – 4 cos2 60°) is equal to ______.