Advertisements
Advertisements
प्रश्न
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
उत्तर
We know that `cos theta = "𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"`
Let us consider right angled Δle ABC
Let x be the opposite side, By applying Pythagoras theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
25 = 𝑥2 + 9
𝑥2 = 16 ⇒ 𝑥 = 4
`sin theta = (AB)/(AC) = 4/5`
`tan theta = (AB)/(BC) = 4/3`
Substitute sin 𝜃, tan 𝜃 in the equation we get
`(sin theta 1/(tan theta))/(2 tan theta) = (4/5 - 3/4)/(2 xx 4/3)`
`= ((16 - 15)/20)/(8/3)`
= `(1/20)/(8/3)`
`= 1/20 xx 8/3 = 3/160`
APPEARS IN
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
Find will be the value of cos 90° + sin 90°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.