Advertisements
Advertisements
प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
उत्तर
We have
`sin theta = 3/5`
In Δ ABC
`AC^2 = AB^2 + BC^2`
`=> (5)^2 = (3)^2 + (BC)^2`
`=> 25 = 9 + (BC)^2`
`=> (BC)^2 = 25 - 9`
=> (BC)^2 = 16
=> BC = 4
`:. cos theta = 4/5 and cot theta = 4/3`
Now `(cos theta - 1/(tan theta))/(2 cot theta) = ((4/5) - (4/3))/(2 xx 4/3)`
`= ((12 - 20)/15)/(8/3)`
`= (-8)/15 xx 3/8`
`= (-1)/5`
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C