Advertisements
Advertisements
प्रश्न
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
उत्तर
In ΔABC,
BC2 = AB2 + AC2
⇒ BC = `sqrt("AB"^2 + "AC"^2)`
⇒ BC = `sqrt(5^2 + 12^2)`
= `sqrt(169)`
= 13
AC = 12 units
BC = 13units
AB = 5units
cos C
= `"Base"/"Hypotenuse"`
= `"AC"/"BC"`
= `(12)/(13)`.
APPEARS IN
संबंधित प्रश्न
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
From the given figure, find the values of sec B