Advertisements
Advertisements
Question
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
Solution
In ΔABC,
BC2 = AB2 + AC2
⇒ BC = `sqrt("AB"^2 + "AC"^2)`
⇒ BC = `sqrt(5^2 + 12^2)`
= `sqrt(169)`
= 13
AC = 12 units
BC = 13units
AB = 5units
cos C
= `"Base"/"Hypotenuse"`
= `"AC"/"BC"`
= `(12)/(13)`.
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P