Advertisements
Advertisements
प्रश्न
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
उत्तर
In ΔABC,
BC2 = AB2 + AC2
⇒ BC = `sqrt("AB"^2 + "AC"^2)`
⇒ BC = `sqrt(5^2 + 12^2)`
= `sqrt(169)`
= 13
AC = 12 units
BC = 13units
AB = 5units
cos C
= `"Base"/"Hypotenuse"`
= `"AC"/"BC"`
= `(12)/(13)`.
APPEARS IN
संबंधित प्रश्न
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ