Advertisements
Advertisements
प्रश्न
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ
उत्तर
sin θ = `"a"/sqrt("a"^2 + "b"^2)`
In the triangle ΔABC
BC2 = AC2 – AB2
= `(sqrt("a"^2 + "b"^2))^2 - "a"^2`
= a2 + b2 − a2 = b2
BC = `sqrt("b"^2)` = b
cos θ = `"b"/sqrt("a"^2 + "b"^2)`
L.H.S = b sin θ
= `"b" "a"/sqrt("a"^2 + "b"^2)`
= `"ab"/sqrt("a"^2 + "b"^2)`
R.H.S = a cos θ
= `"a" "b"/sqrt("a"^2 + "b"^2)`
= `"ab"/sqrt("a"^2 + "b"^2)`
L. H. S = R. H. S
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`