Advertisements
Advertisements
प्रश्न
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
उत्तर
Given angle, ABC = 90° in the figure
⇒ AC2 = AB2 + BC2 ...(AC is hypotenuse in Δ ABC )
⇒ AC2 = a2 + a2
∴ AC2 = 2a2 and AC =`sqrt2a`
Now
(i) sin A = `"perpendicular"/"hypotenuse" = "BC"/"AC" = a/(sqrt2a) = 1/(sqrt2)`
(ii) sec A = `"hypotenuse"/"base" = "AC"/"AB" = (sqrt2a)/a = sqrt2`
(iii) sin A = `"perpendicular"/"hypotenuse" = "BC"/"AC" = a/(sqrt2a) = 1/(sqrt2)`
cos A = `"base"/"hypotenuse" = "AB"/"AC" = a/(sqrt2a) = 1/(sqrt2)`
cos2A + sin2A = `(1/(sqrt2))^2 + (1 /(sqrt2))^2`
= `(1)/(2) +(1)/ (2)`
= 1
APPEARS IN
संबंधित प्रश्न
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
If sinA = `(3)/(5)`, find cosA and tanA.
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`