Advertisements
Advertisements
प्रश्न
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
उत्तर
Here, sin (A – B) = `1/2`
`⇒ sin (A – B) = 30^0 [∵ sin 30^0 = 1/2]`
`⇒ (A – B) = 30^0` …….(i)
`Also, cos (A + B) = 1/2`
`⇒ cos (A + B) = cos 60^0 [∵ cos 60^0 = 1/2]`
`⇒ A + B = 60^0` ….(ii)
Solving (i) and (ii), we get:
`A = 45^0 and B = 15^0`
APPEARS IN
संबंधित प्रश्न
In Fig below, Find tan P and cot R. Is tan P = cot R?
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
`(cos 28°)/(sin 62°)` = ?
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C