Advertisements
Advertisements
प्रश्न
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
उत्तर
Here, sin (A + B) = 1
⇒ sin (A + B) = 900 [∵ sin 900 = 1]
⇒ (A + B) = 900 …….(i)
Also, cos (A – B) = 1
⇒ cos (A – B) = 00 [∵ cos 00 = 1]
⇒ A – B = 00 ….(ii)
Solving (i) and (ii), we get:
A = 450 and B = 450
APPEARS IN
संबंधित प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
sin20° = cos ______°
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`