Advertisements
Advertisements
प्रश्न
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
उत्तर
From the right-angled ΔABC, we have:
`(BC)/(AC) = sin 45^0`
⇒ `(BC)/(3sqrt(2)) = 1/sqrt(2) `⇒ BC = 3cm
Also, `(AB)/(AC) = cos 45^0`
⇒` (AB)/(3sqrt(2)) = 1/sqrt(2)` ⇒ AB = 3 cm
∴ BC = 3 cm and AB = 3 cm
APPEARS IN
संबंधित प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`
If sinA = `(3)/(5)`, find cosA and tanA.
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`
A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)