Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
उत्तर
sinA = `(12)/(13)`
sinA = `"Perpendicular"/"Hypotenuse" = (12)/(13)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((13)^2 - (12)^2`
= `sqrt(169 - 144)`
= `sqrt(25)`
= 5
cosA = `"Base"/"Hypotenuse" = (5)/(13)`
secA = `(1)/"cosA" = (13)/(5)`
cotA = `(1)/"tanA" = (5)/(12)`
cosecA = `(1)/"sinA" = (13)/(12)`.
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
If tan θ = `20/21` show that `((1-sin θ + cos θ))/((1+ sin θ +cos θ)) = 3/7`
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
From the given figure, find all the trigonometric ratios of angle B
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`