Advertisements
Advertisements
प्रश्न
If tan θ = `20/21` show that `((1-sin θ + cos θ))/((1+ sin θ +cos θ)) = 3/7`
उत्तर
Let us consider a right ΔABC right angled at B and ∠𝐶 = 𝜃
Now, we know that tan 𝜃 = `(AB)/(BC) = 20/21`
So, if AB = 20k, then BC = 21k, where k is a positive number.
Using Pythagoras theorem, we get:
`AC^2 = AB^2 + BC^2`
`⟹ AC^2 = (20K)^2 + (21K)^2`
`⟹ AC^2 = 841K^2`
⟹ 𝐴𝐶 = 29𝑘
Now. Sin 𝜃 = `(AB)/(AC) = 20/29 and cos θ =(BC)/(AC)=21/29`
Substituting these values in the give expression, we get:
LHS = `(1- sin θ + cos θ )/(1+ sin θ + cos θ )`
=` (1-20/29+21/29)/(1+20/29+21/29)`
=` ((29-20+21)/29)/((29+20+21)/29) = 30/70 = 3/7 = `𝑅𝐻𝑆
∴ LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
cos450 cos300 + sin450 sin300
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`