Advertisements
Advertisements
प्रश्न
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
उत्तर
We have ,
sec θ = `5/4`
`⇒ 1/(cos θ) = 5/4`
`⇒ cos θ = 4/5`
Also,
`sin^2 θ = 1-cos^2 θ`
`= 1-(4/5)^2`
`= 1-16/25`
=`9/25`
`⇒ sin θ = 3/5`
Now ,
LHS = `((sin θ -2 cos θ))/((tan θ - cot θ))`
= `((sin θ - 2 cos θ))/(((sin θ cos θ)/(cos θ sin θ))`
=` ((sin θ - 2 - cos θ))/(((sin^2 θ- cos^2 θ)/(sin θ cosθ)))`
`(sinθ cosθ (sinθ-2cosθ))/((sin^2θ-cos^2 θ))`
`=(3/5xx4/5(3/5-2xx4/5))/((3/5)^2-(4/5)^2`
=`(12/25(3/5-8/5))/((9/25-16/25))`
`= (12/25xx((-5)/5))/((-7/25))`
=`12/7`
= RHS
APPEARS IN
संबंधित प्रश्न
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
If sinA = 0.8, find the other trigonometric ratios for A.
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS