Advertisements
Advertisements
प्रश्न
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
उत्तर
Consider the diagram:
cot ∠ABD = `(15)/(10) = (3)/(2)`
i.e.`"base"/"perpendicular" = "AB"/"BD" = (3)/(2)`
Therefore, if length of base = 3x, length of perpendicular = 2x
Since
AB2 + AD2 = BD2 ...[Using Pythagoras Theorem]
(3x)2 + (2x)2 = BD2
BD2 = 13x2
∴ BD = `sqrt13x`
Now
BD = 26
`sqrt13x` = 26
x = `(26)/sqrt13`
Therefore
AD = 2x
= 2x `(26)/sqrt13`
= `(52)/sqrt13` cm
AB = 3x
= `3 xx (26)/sqrt13`
=`(78)/sqrt13` cm
Now
Area of rectangle ABCD = AB × AD
= `(78)/sqrt13 x (52)/sqrt13`
= 312 cm2
Perim of rectangle ABCD = 2 (AB + AD)
= 2 `((78)/sqrt13 + (52)/sqrt13)`
= `(260)/sqrt13`
= 20`sqrt13` cm
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`