Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
उत्तर
Given
`A = 30^@ and B = 60^@`
To verify:
`cos(A + B) = cos A cos B - sinA sin B` ......(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
`cos(30 + 60) = cos 90`
= 0
Now consider RHS of the expression to be verified in equation (2)
Therefore,
cosA cos B - sin A sin B = cos 30 cos 60 - sin 30 sin 60
`= sqrt3/2 xx 1/2 - 1/2 xx sqrt3/2`
= 0
Hence it is verfified that
cos (A + B) = cos A cos B - sin A sin B
APPEARS IN
संबंधित प्रश्न
In Fig below, Find tan P and cot R. Is tan P = cot R?
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
Evaluate:
sin600 cos300 + cos600 sin300
Evaluate:
cos600 cos300− sin600 sin300
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1