Advertisements
Advertisements
प्रश्न
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
उत्तर
A = 300
⇒ 2A = 2 × 300 = 600
By substituting the value of the given T-ratio, we get:
cos A = `sqrt((1+ cos^2A)/2)`
cos `30^0 = sqrt((1+cos 60^0)/2) = sqrt((1+(1/2)/2)) = sqrt((3/2)/2) =sqrt(3/4) = sqrt(3)/2`
∴ cos A = `sqrt(3)/2`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.