Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
उत्तर
tanB = `(8)/(15)`
tanB = `"Perpendicular"/"Base" = (8)/(15)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((8)^2 + (15)^2`
= `sqrt(64 + 225)`
= `sqrt(289)`
= 17
cot B = `(1)/"tan B" = (15)/(8)`
sin B = `"Perpendicular"/"Hypotenuse" = (8)/(17)`
cos B = `"Base"/"Hypotenuse" = (15)/(17)`
sec B = `(1)/"cos B" = (17)/(15)`
cosec B = `(1)/"sin B" = (17)/(8)`.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If cos θ = `7/25` find the value of all T-ratios of θ .
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A
From the given figure, find the values of sec B