Advertisements
Advertisements
प्रश्न
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ sin A = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = (7)/(25)`
⇒ cosec A = `(1)/"sin A" = (25)/(7)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 252 - 72
= 625 - 49
= 576
⇒ AB - 24
Now,
cos A = `"Base"/"Hypotenuse" = "AB"/"AC" = (24)/(25)`
tan A = `"Perpendicular"/"Base" = "BC"/"AB" = (7)/(24)`
⇒ cot A = `(1)/"tan A" = (24)/(7)`
cot2A - cosec2A
= `(24/7)^2 - (25/7)^2`
= `(576)/(49) - (625)/(49)`
= `(-49)/(49)`
= -1.
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C