Advertisements
Advertisements
प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
उत्तर
We have `sec theta= 5/4`
In ΔABC
`AC^2 = AB^2 + BC^2`
`=> (5)^2 = AB^2 + (4)^2`
`=> AB^2 = 25 - 16`
=> AB = 3
`∴ sin theta (AB)/(AC) = 3/5 , cos theta = 4/5, tan theta =3/4 , cot theta = 3/4`
NOw
`(sin theta - 2 cos theta)/(tan theta - cot theta) = (3/5 - 2 xx 4/5)/(3/4 - 4/3)`
`= 1/5 xx (3-8)/((9 - 16)/12)`
`= 1/5 xx (-5/7)xx12`
`= 12/7`
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
Evaluate:
sin600 cos300 + cos600 sin300
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A