Advertisements
Advertisements
प्रश्न
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
उत्तर
Consider the figure below :
In the isosceles ΔABC, AB =AC = 5cm and BC = 8cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 4 cm
Since ∠ADB = 90°
⇒ AB2 + AD2 + BD2 ...( AB is hypotenuse in ΔABD)
⇒ AD2 = 52 – 42
∴ AD2 = 9 and AD = 3
(i) sin B = `"AD"/"AB" = (3)/(5)`
(ii) tan C = `"AD"/"DC" = (3)/(4)`
(iii) sin B = `"AD"/"AB" = (3)/(5)`
cos B = `"BD"/"AB" = (4)/(5)`
Therefore
sin2 B + cos2 B
= `(3/5)^2 + (4/5)^2`
= `(25)/(25)`
= 1
(iv) tan C = `"AD"/"DC" = (3)/(4)`
cot B = `"BD"/"AD" = (4)/(3)`
Therefore
tan C – cot B
= `(3)/(4) – (4)/(3)`
= `– (7)/(12)`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
From the given figure, find the values of cot B
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.