Advertisements
Advertisements
Question
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
Solution
Consider the figure below :
In the isosceles ΔABC, AB =AC = 5cm and BC = 8cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 4 cm
Since ∠ADB = 90°
⇒ AB2 + AD2 + BD2 ...( AB is hypotenuse in ΔABD)
⇒ AD2 = 52 – 42
∴ AD2 = 9 and AD = 3
(i) sin B = `"AD"/"AB" = (3)/(5)`
(ii) tan C = `"AD"/"DC" = (3)/(4)`
(iii) sin B = `"AD"/"AB" = (3)/(5)`
cos B = `"BD"/"AB" = (4)/(5)`
Therefore
sin2 B + cos2 B
= `(3/5)^2 + (4/5)^2`
= `(25)/(25)`
= 1
(iv) tan C = `"AD"/"DC" = (3)/(4)`
cot B = `"BD"/"AD" = (4)/(3)`
Therefore
tan C – cot B
= `(3)/(4) – (4)/(3)`
= `– (7)/(12)`
APPEARS IN
RELATED QUESTIONS
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
In the adjoining figure, `∠B = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find (i) sin theta and (ii) `costheta`
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C