Advertisements
Advertisements
Question
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Solution
Consider the diagram below :
sin A = `(3)/(5)`
i .e. `"perpendicular"/"hypotenuse" = (3)/(5) ⇒"BC" /"AC" = (3)/(5)`
Therefore if length of BC = 3x, length of AC = 5x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
AB2 + (3x)2 = (5x)2
AB2 = 25x2 – 9x2 = 16x2
∴ AB = 4x (base)
Now
(i) tan A = `"perpendicular"/"base" = (3x)/(4x) = (3)/(4)`
(ii) cos A = `"base"/"hypotenuse" = (4x)/(5x) = (4)/(5)`
APPEARS IN
RELATED QUESTIONS
If sin A = `9/41` find all the values of cos A and tan A
`(cos 28°)/(sin 62°)` = ?
tan 30° × tan ______° = 1
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
Using the measurements given in the following figure:
(i) Find the value of sin θ and tan θ.
(ii) Write an expression for AD in terms of θ
From the given figure, find the values of sin B
From the given figure, find the values of cos C
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ