English

Given : Sin a = (3)/(5) Find : Tan a Cos a - Mathematics

Advertisements
Advertisements

Question

Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A 

Sum

Solution

Consider the diagram below : 

sin A = `(3)/(5)`

i .e. `"perpendicular"/"hypotenuse" = (3)/(5) ⇒"BC" /"AC" = (3)/(5)`

Therefore if length of BC = 3x, length of AC = 5x 
Since

AB2 + BC2 = AC2          ...[ Using Pythagoras Theorem ]
AB2 + (3x)2 = (5x)2
AB2 = 25x2 – 9x2 = 16x2
∴ AB = 4x (base)

Now
(i) tan A = `"perpendicular"/"base" = (3x)/(4x) = (3)/(4)`

(ii) cos A = `"base"/"hypotenuse" = (4x)/(5x) = (4)/(5)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [Page 279]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 5 | Page 279
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×