Advertisements
Advertisements
Question
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
Solution
Given angle ADB = 90° and ADC = 90°
⇒ AB2 = AD2 + BD2 ...( AB is hypotenuse in ΔABD)
⇒ 132 = AD2 + 52
∴ AD2 = 169 – 25 = 144 and AD = 12
⇒ AC2 = AD2 + DC2 ...( AC is hypotenuse in ΔADC)
⇒ AC2 = 122 + 162
∴ AC2 = 144 + 256 = 400 and AC = 20
(i) sin B = `"perpendicular"/"hypotenuse" = "AD"/"AB" = (12)/(13)`
(ii) tan C = `"perpendicular"/"base" = "AD"/"DC" = (12)/(16) = (3)/(4) `
(iii) sec B = `"hypotenuse"/"base" = "AB"/"BD" = (13)/(5)`
tan B = `"perpendicular"/"base" = "AD"/"BD" = (12)/(5) `
sec2 B – tan2 B = `(13/5)^2 – (12/5)^2`
= `(169 – 144)/( 25)`
= `(25)/(25)`
= 1
(iv) sin C = `"perpendicular"/"hypotenuse" = "AD"/"AC" = (12)/(20) = (3)/(5)`
cos C = `"base"/"hypotenuse" = "DC"/"AC" = (16)/(20) = (4)/(5)`
sin2 C + cos2 C = `(3/5)^2 + (4/5)^2`
= `(9 + 16 )/(25)`
= `(25)/(25)`
= 1
APPEARS IN
RELATED QUESTIONS
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
If sinA = `(3)/(5)`, find cosA and tanA.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A