Advertisements
Advertisements
Question
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
Solution
5 cos θ = 6 sin θ
tan θ = `(5)/(6)`
Now
(i) tan θ = `(5)/(6)`
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ) = ((12 sin θ)/cos θ – (3 cos θ)/cos θ)/((12 sin θ)/cos θ + (3 cos θ)/ cos θ)`
= `( 12 tan θ – 3)/(12 tan θ + 3)`
= `(12(5/6)–3)/(12(5/6)+3)`
= `(42/6)/(78/6)`
= `(42)/(78)`
= `(7)/(13)`
APPEARS IN
RELATED QUESTIONS
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If sin A = `9/41` find all the values of cos A and tan A
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
From the given figure, find the values of sec B
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅