Advertisements
Advertisements
प्रश्न
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
उत्तर
5 cos θ = 6 sin θ
tan θ = `(5)/(6)`
Now
(i) tan θ = `(5)/(6)`
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ) = ((12 sin θ)/cos θ – (3 cos θ)/cos θ)/((12 sin θ)/cos θ + (3 cos θ)/ cos θ)`
= `( 12 tan θ – 3)/(12 tan θ + 3)`
= `(12(5/6)–3)/(12(5/6)+3)`
= `(42/6)/(78/6)`
= `(42)/(78)`
= `(7)/(13)`
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`