Advertisements
Advertisements
प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
उत्तर
In Δle ABC ∠A + ∠B + ∠C = 180°
∠A + 90° + ∠A = 180°
2∠A = 90°
∠A = 45°
∴ ∠A = 45° ....(1)
Adding ∠A = 45° (1) in sin A sin B + cos A cos B
∠A = 45° sin 90^@ + cos 45^@ cos 90^@
`1/sqrt2 . 1 + 0`
`= 1/sqrt2 . 1 + 0`
`= 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`