Advertisements
Advertisements
प्रश्न
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
उत्तर
On substituting the values of various T-ratios, we get:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
=`4/(sqrt(3))^2 + 1/(1/2)^2 -2xx(1/sqrt(2))^2-(0)^2`
=`4/3 +1/(1/4) -2xx1/2-0`
=`4/3 +4-1`
=`4/3+3=(4+9)/3=13/3`
APPEARS IN
संबंधित प्रश्न
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
Evaluate:
cos600 cos300− sin600 sin300
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.