Advertisements
Advertisements
प्रश्न
Evaluate:
cos600 cos300− sin600 sin300
उत्तर
On substituting the values of various T-ratios, we get:
cos600 cos300− sin600 sin300
=`(1/2 xx sqrt(3)/2-sqrt(3)/2 xx1/2)=(sqrt(3)/4 - sqrt(3)/4)=0`
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If sin A = `9/41` find all the values of cos A and tan A
If tan θ = `20/21` show that `((1-sin θ + cos θ))/((1+ sin θ +cos θ)) = 3/7`
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x