Advertisements
Advertisements
Question
Evaluate:
cos600 cos300− sin600 sin300
Solution
On substituting the values of various T-ratios, we get:
cos600 cos300− sin600 sin300
=`(1/2 xx sqrt(3)/2-sqrt(3)/2 xx1/2)=(sqrt(3)/4 - sqrt(3)/4)=0`
APPEARS IN
RELATED QUESTIONS
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If tan θ = `20/21` show that `((1-sin θ + cos θ))/((1+ sin θ +cos θ)) = 3/7`
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`