Advertisements
Advertisements
Question
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
Solution
Let A = 450 and B = 300
(i) As, sin(A + B) = sin A cos B + cos A sin B
⇒ sin (450 + 300) = sin 450 cos 300 + cos 450 sin 300
⇒ sin `(75^0) = 1/sqrt(2) xx sqrt(3)/2 + 1/sqrt(2) xx1/2`
⇒ sin `(75^0) = sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2))`
∴ sin `(75^0) = (sqrt(3) +1)/(2 sqrt(2))`
ii) As, cos (A – B) = cos A cos B + sin A sin B
⇒ cos (450 – 300) = cos 450 cos 300 + sin 450 sin 300
⇒ cos `(15^0) = 1/sqrt(2) xx sqrt(3)/2 + 1/sqrt(2) xx1/2`
⇒ cos `(15^0) = sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2))`
∴ cos `(15^0)=(sqrt(3)+1)/(2sqrt(2))`
Disclaimer: cos 150 can also be written by taking A = 600 and B = 450.
APPEARS IN
RELATED QUESTIONS
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`