Advertisements
Advertisements
Question
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
Solution
Consider ΔABC, where ∠B = 90°
⇒ sin A = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = (7)/(25)`
⇒ cosec A = `(1)/"sin A" = (25)/(7)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 252 - 72
= 625 - 49
= 576
⇒ AB - 24
Now,
cos A = `"Base"/"Hypotenuse" = "AB"/"AC" = (24)/(25)`
tan A = `"Perpendicular"/"Base" = "BC"/"AB" = (7)/(24)`
⇒ cot A = `(1)/"tan A" = (24)/(7)`
`"cos A" + (1)/"cot A"` = cos A + tan A
= `(24)/(25) + (7)/(24)`
= `(576 + 175)/(600)`
= `(751)/(600)`.
APPEARS IN
RELATED QUESTIONS
In the adjoining figure, `∠B = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find (i) sin theta and (ii) `costheta`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
sin20° = cos ______°
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y