Advertisements
Advertisements
Question
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
Solution
ΔABC is an isosceles right-angled triangle.
∴ AC2
= AB2 + BC2
= 62 + 62
= 36 + 36
= 72
⇒ AC = `6sqrt(2)"cm"`
cos2 C + cosec2 C
= `(1/sqrt(2))^2 + (sqrt(2))^2`
= `(1)/(2) + 2`
= `(5)/(2)`.
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
cos600 cos300− sin600 sin300
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`