Advertisements
Advertisements
Question
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
Solution
Let us consider a right ΔABC right angled at B.
Now, we know that cos θ = 0.6 = `(BC)/(AC) = 3/5`
So, if BC = 3k, then AC = 5k, where k is a positive number.
Using Pythagoras theorem, we have:
`Ac^2 = AB^2 + BC^2`
`⟹ AB^2 = AC^2 − BC^2`
`⟹ AB^2 = (5K)^2 − (3K)^2 = 25K^2 − 9K^2`
`⟹ AB^2 = 16K^2`
⟹ 𝐴𝐵 = 4𝑘
Finding out the other T-rations using their definitions, we get:
sin θ = `(AB)/(AC) = (4K)/(5K) = 4/5`
TAN θ = `(AB)/(BC) = (4K)/(3K) = 4/3`
Substituting the values in the given expression, we get:
5 sin 𝜃 − 3 tan 𝜃
`⇒ 5 (4/5) - 3(4/3)`
= 4-4=0= RHS
i.e., LHS = RHS
Hence, Proved.
APPEARS IN
RELATED QUESTIONS
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
cos 40° = sin ______°
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
From the given figure, find the values of cosec C