Advertisements
Advertisements
Question
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
Solution
We know that sec (90 – θ) = cosec2 θ
Sec θ = sec (90 – 60°)
On equating we get
Sec θ = sec 30°
𝜃 = 30°
To Find 2 cos2 θ – 1
`=> 2 xx cos^2 30^@ - 1` `[cos 30 = sqrt3/2]`
`=> 2 xx (sqrt3/2)^2 - 1`
`=> 2 xx 3/4 - 1`
`=> 3/2 - 1`
`= 1/2`
APPEARS IN
RELATED QUESTIONS
Given 15 cot A = 8. Find sin A and sec A.
In Fig below, Find tan P and cot R. Is tan P = cot R?
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If sinA = 0.8, find the other trigonometric ratios for A.