English

Given: Tan a = 4 ( 3 Find : Coseca Cot A– Sec a - Mathematics

Advertisements
Advertisements

Question

Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`

Sum

Solution

Consider the diagram below :

tan A = `(4)/(3)`

i.e. `"perpendicular"/"base" = (4)/(3) ⇒ "BC"/"AB" = (4)/(3)`

Therefore if length of AB = 3x, length of BC = 4x

Since
AB2 + BC2 = AC2    ... [ Using Pythagoras Theorem ]

( 3x )2 + (4x)2 = AC2

AC2 = 9x2 + 16x2 = 25x2

AC = 5x                   ...( hypotenuse )

Now

sec A = `" hypotenuse "/"base" = "AC"/"AB" =(5x)/ (3x) = (5)/(3)`

cot A = `" base "/"perpendicular" = "AB"/"BC" = (3x)/ (4x) = (3)/(4)`

cosec A = `" hypotenuse "/"perpendicular" = "AC"/"BC" = (5x)/(4x)  = (5)/(4)`

Therefore

`("cosec""A")/(cot"A" – sec "A")`

= `(5/ 4) /(3/4  – 5/3)`

= ` (5 /4)/(– 11/12)`

= `– (60)/(44) `

= `– (15)/(11)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [Page 280]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 9 | Page 280
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×