Advertisements
Advertisements
प्रश्न
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
उत्तर
Consider the diagram below :
tan A = `(4)/(3)`
i.e. `"perpendicular"/"base" = (4)/(3) ⇒ "BC"/"AB" = (4)/(3)`
Therefore if length of AB = 3x, length of BC = 4x
Since
AB2 + BC2 = AC2 ... [ Using Pythagoras Theorem ]
( 3x )2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
AC = 5x ...( hypotenuse )
Now
sec A = `" hypotenuse "/"base" = "AC"/"AB" =(5x)/ (3x) = (5)/(3)`
cot A = `" base "/"perpendicular" = "AB"/"BC" = (3x)/ (4x) = (3)/(4)`
cosec A = `" hypotenuse "/"perpendicular" = "AC"/"BC" = (5x)/(4x) = (5)/(4)`
Therefore
`("cosec""A")/(cot"A" – sec "A")`
= `(5/ 4) /(3/4 – 5/3)`
= ` (5 /4)/(– 11/12)`
= `– (60)/(44) `
= `– (15)/(11)`
APPEARS IN
संबंधित प्रश्न
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
Using the measurements given in the following figure:
(i) Find the value of sin θ and tan θ.
(ii) Write an expression for AD in terms of θ
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
From the given figure, find the values of cot B