Advertisements
Advertisements
प्रश्न
Given: tan A =
उत्तर
Consider the diagram below :
tan A =
i.e.
Therefore if length of AB = 3x, length of BC = 4x
Since
AB2 + BC2 = AC2 ... [ Using Pythagoras Theorem ]
( 3x )2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
AC = 5x ...( hypotenuse )
Now
sec A =
cot A =
cosec A =
Therefore
=
=
=
=
APPEARS IN
संबंधित प्रश्न
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If A = 300 , verify that:
(iii) tan 2A =
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3
Given: cos A =
Evaluate:
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A =
If sinA = 0.8, find the other trigonometric ratios for A.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C