Advertisements
Advertisements
प्रश्न
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
उत्तर
Consider the diagram below :
5cot θ = 12
cot θ = `(12)/(5)`
i.e.`"base"/"perpendicular" = (12)/(5)`
Therefore if length of base = 12x, length of perpendicular = 5x
Since
base2 + perpendicular2 = hypotenuse2 ...[ Using Pythagoras Theorem]
(12x)2 + (5x)2 = hypotenuse2
hypotenuse2 = 144x2 + 25x2 = 169x2
∴ hypotenuse = 13x
Now
cosec θ = `"hypotenuse"/"perpendicular" = (13x)/(5x) = (13)/(5)`
sec θ = `"hypotenuse"/"base" = (13x)/(12x) = (13)/(12)`
Therefore
cosec θ+sec θ
= `(13)/(5)+(13)/(12)`
= `(221)/(60)`
= `3(41)/(60)`
APPEARS IN
संबंधित प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x