Advertisements
Advertisements
प्रश्न
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
उत्तर
Consider the diagram below :
tan x = `1(1)/(3)`
tan x = `(4)/(3)`
i.e.`"perpendicular"/"base" = (4)/(3)`
Therefore if length of base = 3x, length of perpendicular = 4x
Since
base2+ perpendicular2 = hypotenuse2 ..[ Using Pythagoras Theorem]
(3x)2 + (4x)2 = hypotenuse2
hypotenuse = 9x2+16x2+ 25x2
∴ hypotenuse = 5x
Now
sin x = `"perpendicular"/"hypotenuse" = (4x)/(5x) = (4)/(5)`
cos x = `"base"/"hypotenuse" = (3x)/(5x) = (3)/(5)`
Therefore
4 sin2 x – 3cos2 x +2
= `4(4/5)^2 – 3(3/5)^2+ 2`
= `(64)/(25) – (27)/(25)+ 2`
= `(87)/(25)`
=`3(12)/(25)`
APPEARS IN
संबंधित प्रश्न
If cot θ = 2 find all the values of all T-ratios of θ .
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Evaluate:
sin600 cos300 + cos600 sin300
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
sin20° = cos ______°
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`