Advertisements
Advertisements
प्रश्न
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
उत्तर
Consider the diagram below :
tan x = `1(1)/(3)`
tan x = `(4)/(3)`
i.e.`"perpendicular"/"base" = (4)/(3)`
Therefore if length of base = 3x, length of perpendicular = 4x
Since
base2+ perpendicular2 = hypotenuse2 ..[ Using Pythagoras Theorem]
(3x)2 + (4x)2 = hypotenuse2
hypotenuse = 9x2+16x2+ 25x2
∴ hypotenuse = 5x
Now
sin x = `"perpendicular"/"hypotenuse" = (4x)/(5x) = (4)/(5)`
cos x = `"base"/"hypotenuse" = (3x)/(5x) = (3)/(5)`
Therefore
4 sin2 x – 3cos2 x +2
= `4(4/5)^2 – 3(3/5)^2+ 2`
= `(64)/(25) – (27)/(25)+ 2`
= `(87)/(25)`
=`3(12)/(25)`
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ