Advertisements
Advertisements
Question
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
Solution
Consider the diagram below :
tan x = `1(1)/(3)`
tan x = `(4)/(3)`
i.e.`"perpendicular"/"base" = (4)/(3)`
Therefore if length of base = 3x, length of perpendicular = 4x
Since
base2+ perpendicular2 = hypotenuse2 ..[ Using Pythagoras Theorem]
(3x)2 + (4x)2 = hypotenuse2
hypotenuse = 9x2+16x2+ 25x2
∴ hypotenuse = 5x
Now
sin x = `"perpendicular"/"hypotenuse" = (4x)/(5x) = (4)/(5)`
cos x = `"base"/"hypotenuse" = (3x)/(5x) = (3)/(5)`
Therefore
4 sin2 x – 3cos2 x +2
= `4(4/5)^2 – 3(3/5)^2+ 2`
= `(64)/(25) – (27)/(25)+ 2`
= `(87)/(25)`
=`3(12)/(25)`
APPEARS IN
RELATED QUESTIONS
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
If tan = 0.75, find the other trigonometric ratios for A.
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`